Algebraic proofs of cut elimination

نویسنده

  • Jeremy Avigad
چکیده

Algebraic proofs of the cut-elimination theorems for classical and intuitionistic logic are presented, and are used to show how one can sometimes extract a constructive proof and an algorithm from a proof that is nonconstructive. A variation of the double-negation translation is also discussed: if φ is provable classically, then ¬(¬φ) is provable in minimal logic, where θ denotes the negation-normal form of θ. The translation is used to show that cut-elimination theorems for classical logic can be viewed as special cases of the cut-elimination theorems for intuitionistic logic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof Transformation by CERES

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton ...

متن کامل

System Description : The Cut - Elimination System CERES ∗

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton ...

متن کامل

Classical Proofs via Basic Logic

Cut-elimination, besides being an important tool in proof-theory, plays a central role in the proofs-as-programs paradigm. In recent years this approach has been extended to classical logic (cf. Girard 1991, Parigot 1991, and recently Danos Joinet Schellinx 1997). This paper introduces a new sequent calculus for (propositional) classical logic, indicated by ? C. Both, the calculus and the cut-e...

متن کامل

Transforming and Analyzing Proofs in the CERES-System

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. Cut-elimination can be applied to mine real mathematical proofs, i.e. for extracting explicit and algorithmic information. The system CERES (cut-elimination by resolution) is based on automate...

متن کامل

Streams and strings in formal proofs

Streams are acyclic directed subgraphs of the logical $ow graph of a proof representing bundles of paths with the same origin and the same end. The notion of stream is used to describe the evolution of proofs during cut-elimination in purely algebraic terms. The algebraic and combinatorial properties of $ow graphs emerging from our analysis serve to elucidate logical phenomena. However, the ful...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Log. Algebr. Program.

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001